
www.bth.se

in real life

1/16

Development Process

Mikael Svahnberg1

2016-03-09

1Mikael.Svahnberg@bth.se



www.bth.se

in real life

2/16

Software Engineering

IEEE std 610.12:1990 “IEEE Standard Glossary of Software
Engineering Terminology”:

Software Engineering
The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the
application of engineering to software.



www.bth.se

in real life

3/16

Software Engineering Process

Systematic
Pre-planned, not ad-hoc
Thorough
Repeatable

Disciplined
Following the plan
Eyes on target

Quantifiable
Measurable

Development
*this

Operation
Deployment is an important part of SE, and must be planned accordingly.

Maintenance
80% – 90% of a system’s life span is spent in maintenance.



www.bth.se

in real life

4/16

Process vs Project vs Product

T. Gorschek, A.M. Davis, Requirements Engineering; In Search of the
Dependent Variables, Information and Software Tecnology 50(2008):67–75.

• Requirements engineering process models and best-
practice guides (for example, [12–17]) center on activities
performed on development projects.

Our argument is that the effect of requirements engineer-
ing transcends project instances. The success of activities
performed as part of the requirements engineering process
cannot be determined simply by examining a development
instance, but are instead a part of something larger involv-
ing product management activities [18,19]. A requirements
engineering process change that, say, halves the effort to
construct a system, but lowers the resulting product’s
acceptance by its intended customers is a failure, not a suc-
cess. Although this applies equally to every software
process improvement effort, it is most crucial to apply this
to requirements engineering because requirements engi-
neering’s primary purpose is to increase the likelihood that
the as-built product meets the needs of the intended cus-
tomers. Requirements engineering improvement efforts as
well as process assessment measurements have to take this
into account.

Researchers and engineers alike attempt to make
changes to their processes with the hope that some posi-
tive outcome will result. The processes that they change
are typically called independent variables, and the out-
comes that are to be observed are called dependent vari-
ables. As requirements engineers and as requirements
engineering researchers, we attempt to change the way
requirements engineering is conducted and expect that
positive outcomes will result. The question, however, is
what are these dependent variables? If the dependent
variables are selected deviously, then we can likely prove
that almost any change to the requirements engineering
process was positive. Dependent variables for require-
ments engineering can vary tremendously from the short-
est term (e.g., minimizing the time we spend doing
requirements engineering) to the longest term (e.g., hav-
ing the best possible result for the health of the planet
Earth). Deciding what is the right dependent variable
for any specific case is nontrivial, yet of major conse-
quence. This paper presents a framework of dependent
variables, each of which can serve as a requirements
engineering quality assessment basis.

This paper is structured as follows. In Section 2, we
present the framework for dependent variables suitable
for requirements process quality assessment. In Section
3, measures are proposed for each of the dependent vari-
ables. Suggestions for future research are proposed in
Section 4, and finally our conclusions are summarized
in Section 5.

2. Levels of quality

As requirements processes are changed, we may assess
their impact on many dependent variables. These depen-
dent variables reside within at least five distinct levels, as
shown in Fig. 1. Starting at the center and working out:

• Requirements phase. By far the most commonly used
measure among companies trying to improve their
requirements process, this level includes dependent vari-
ables that relate to [20–22]:
! Requirements cost and time. Such as total cost of the

requirements effort, average cost per requirement,
percentage of total development duration used for
requirements.

! Requirements quality. That is, the quality of the
requirements specification itself, and so on.

• Project. This level is classically equated with ‘‘project
success’’ [23,24], i.e., whether the project was completed
on time, within budget, and did it meet the require-
ments. It includes dependent variables that relate to:
! Project cost and time. Such as total cost of the project

and project duration.
! Project estimates. Such as the degree of meeting the

budget, degree of meeting the schedule, degree to
which the as-built product meets the as-specified
requirements.

! Degree of requirements change.
Notice that a requirements process change that is
assessed as successful using dependent variables
from only the requirements level could still fail mis-
erably at the project level. For example, a project
could reduce the cost of the requirements phase
by skipping it altogether, and the result could be
so much project entropy that the project ends up
costing twice as much as planned.

• Product. Dependent variables within this level determine
the degree of product success, e.g., did the product suc-
ceed in fulfilling the needs of its intended customers/
users. It includes measures relating to:
! Requirements selection. That is, the degree to which

the requirements selected for the product reduces
errors, increases efficiency, and so on, for its users
and or customers.

Fig. 1. Levels of requirements process change dependent variables.

68 T. Gorschek, A.M. Davis / Information and Software Technology 50 (2008) 67–75

(+ Process, which is not visible in this figure but neatly bisects it.)



www.bth.se

in real life

5/16

Example of UML Process:

Dice Game Machine
On the Machine a player may login, logout or play the game.
When playing the game a player rolls two die. If the total number of points is greater
than seven the player wins, otherwise the player loses.

Construct
Use Case Diagrams
Use Cases
Conceptual Model
Class Diagram
Collaboration Diagram
Interaction Diagram
Flowcharts?
?? What happened to testing ??



www.bth.se

in real life

6/16

Discussion

What is good with waterfall?
Where/How would you do design in Scrum?
Where would you do design in Kanban?
When should you use which process model?
What are their limitations?
Does it work to incrementally test a product like this?



www.bth.se

in real life

7/16

Project Planning

What do we need to know in order to plan something?
How do we put this together into a plan?



www.bth.se

in real life

8/16

Work Breakdown Structure



www.bth.se

in real life

9/16

GANTT

Feature Tasks Sub-Tasks Effort Start Date End Date Responsible Spent Time Progress Projected Effort Over/Undertime
Search for Room Database Design spent/progress (est eff.) - (proj. eff)

GUI Design
Implementation Implement DB

Implement Logic
Implement GUI

Testing Create Tests
Run Tests



www.bth.se

in real life

10/16

Tracking Progress

Reporting Time or reporting Progress
Amount of time/money spent
Delivered LOC?
Completed Tasks?

Earned Value Charts
Planned cost (value)
Actual cost
Earned Value



www.bth.se

in real life

11/16

Story Points

An arbitrary measure of the size of a task
Typically uses a modification of a fibonacci sequence:

1,2,3,5,13,40,100

Use them to
measure velocity of your development team.
plan sprints accordingly



www.bth.se

in real life

12/16

Earned Value Charts: Planned



www.bth.se

in real life

13/16

Earned Value Chart: Adding Actual
Cost



www.bth.se

in real life

14/16

Earned Value Chart



www.bth.se

in real life

15/16

Burndown chart



www.bth.se

in real life

16/16

Risk Management

Identify risks
Develop plans to minimise their effect on a project
A risk is a probability that some adverse circumstance will occur

Project risks affect schedule or resources
Product risks affect the quality or performance of the software being
developed
Business risks affect the organisation developing or procuring the software

Monitor and mitigate risks


	Classroom

