
www.bth.se

in real life

1/20

Software Testing

Mikael Svahnberg1

2017-03-30

1Mikael.Svahnberg@bth.se



www.bth.se

in real life

2/20

Testing Goals

(L. Crispin and J. Gregory, “Agile Testing – A Practical Guide for Testers and Agile Teams”, Pearson Education, 2009.)

Discuss: What types of testing can you expect to see in each corner of this
square?



www.bth.se

in real life

3/20

Lower Left Quadrant: Technology Fac-
ing / Supporting the Team

Testability of
API’s, Ports, Adapters

Test database access, updates
Business Logic and Presentation separated
Isolated tests

to isolate problems

Internal Quality
Infrastructure

Safety Net!
build confidence
go faster, do more
support refactoring

Examples of Techniques
Unit Tests
Component Tests



www.bth.se

in real life

4/20

What, Who, When?

Unit Tests
Developer Intent and program design
Does the code-in-the-small do what it is expected to do

Component Tests
Architect’s intents – system design
Do components work together as expected

The Programmer writes the test and test them
Run tests in Continuous Integration tool



www.bth.se

in real life

5/20

Toolkit

Source Code Management
Version Control
Who changed what?
Be able to restore to older version

IDE
Compile, Debug, Build GUI, Unit Test, Refactor

Unit Tests
e.g. xUnit

CI tools
e.g. Jenkins, Travis.ci, Drone.io, . . .



www.bth.se

in real life

6/20

Upper Left Quadrant: Business Fac-
ing / Support the Team

Drive Development with business-facing tests
Ask the right questions
Help customers clarify
Captuer examples, express as executable tests
External Quaity
Know when we’re done.

Examples of Techniques
Functional Tests
Examples
Story Tests
Prototypes
Simulations



www.bth.se

in real life

7/20

What, Who, When?

Testers, Developers
Collaboration with customers
Team responsibilty
Start of Iteration

Business facing tests drive development

Throughout Iteration
No story done until tested



www.bth.se

in real life

8/20

Toolkit

Checklists
Mind Maps

Brainstorming
Words, ideas, tasks

Mockups / Paper Prototypes
User-centered design

Flow Diagrams
Whiteboards
Behaviour-Driven-Development

Cucumber, easyB, nbehave, rspec

GUI Test tools/libraries/frameworks
e.g. Selenium, Cucumber, Canoo WebTest, Robot Framework . . .



www.bth.se

in real life

9/20

Upper Right Quadrant: Business Fac-
ing / Critique Product

Recreate actual user experiences
Realistic use
Learn as you test
Context

What works for your situation
Constructive

Examples of Techniques
Customer Demos
Exploratory Testing
Scenarios
Usability Testing
User Acceptance Testing
Alpha/Beta Testing

Discuss How does this relate to UML and RUP? Discuss Are these tests
automated or manual?



www.bth.se

in real life

10/20

Also behind the GUI

Test API
Input/Output
Sequence of API calls
Checking log files
States and Transitions



www.bth.se

in real life

11/20

What Who, When?

Require good skills, experience, intuition, critical thinking
Invole the customers
As early as possible



www.bth.se

in real life

12/20

Toolkit

Time
Experience
Some of upper left quadrant tools may apply

e.g. Selenium, Cucumber, Canoo WebTest, Robot Framework . . .



www.bth.se

in real life

13/20

Lower Right Quadrant: Technology
Facing / Critique Product

Quality Attributes, e.g.:
Performance
Stability
Reliability
Scalability
Maintainability
. . .

Also
Memory Management
Data Migration
Recovery

Test Environment
Independent, production-like environment



www.bth.se

in real life

14/20

What, Who, When?

Depends on priorities
May be needed already from the get-go
At least get an early baseline



www.bth.se

in real life

15/20

Toolkit

Data Migration, Recovery:
Native Database Tools
Shell Scripts

Monitoring tools
jConsole : Application bottlenecks, memory leaks
jProfiler: Database usage

Load Tests
Loadrunner, SilkPerformer

Other tools
jMeter, jUnitPerf, . . .



www.bth.se

in real life

16/20

Test Quadrants, Summary



www.bth.se

in real life

17/20

Plan your Test Strategy

Scope
Priorities, Risks
Tools
Customers
What to Document
Consider all four quadrants
Use lessons learned to improve



www.bth.se

in real life

18/20

TDD: Test Driven Development

nano-cycle (second by second) Three laws of TDD:
1 You must write a failing test before you write any production code.
2 You must not write more of a test than is sufficient to fail, or fail to

compile.
3 You must not write more production code than is sufficient to make the

currently failing test pass.
micro-cycle (minute by minute) Red-Green-Refactor cycle

1 Create a unit tests that fails
2 Write production code that makes that test pass.
3 Clean up the mess you just made.



www.bth.se

in real life

19/20

TDD: Test Driven Development

milli-cycle (10 minute intervals)
More specific test cases → more generic code
Code is no longer a series of special cases
“Big Picture”
Backtrack from too specific test cases or not general enough code

primary cycle (hour by hour)
ensure architectural boundaries



www.bth.se

in real life

20/20

Discuss: Testing and RUP/UML

How does RUP/UML deal with Testing?
What areas do RUP/UML focus on?


