
www.bth.se

in real life

1/14

Design Patterns

Mikael Svahnberg1

April 3, 2017

1Mikael.Svahnberg@bth.se



www.bth.se

in real life

2/14

Responsibility-Driven Design

Responsibility for Doing
Doing something (e.g. a calculation)
Creating other objects
Initiating an action in another object
Controlling and coordinating other objects

Responsibility for Knowing
Knowing about private encapsulated data
Knowing about related objects
Knowing about things it can derive or calculate



www.bth.se

in real life

3/14

Levels of Patterns

Different levels:
Architecture

Systems, subsystems

Design
Classes, groups of classes

Idioms
One class, functions within one class

GRASP
In some sense orthogonal
Learning aid for OO Design
Advice for Assigning Responsibilities



www.bth.se

in real life

4/14

GRASP Patterns

(Listed on the inside of the book cover)
Information Expert
Creator
Controller
Low Coupling
High Cohesion
Polymorphism
Pure Fabrication
Indirection
Protected Variations



www.bth.se

in real life

5/14

Example: GRASP Patterns

Discuss
Who should calculate the cost of a Booking?
Who should be responsible for creating a Ticket?
Why should a Passenger not be aware of the Flight?
How should a Passenger interact with this system when booking a trip?
How would you implement first, business, and third class?



www.bth.se

in real life

6/14

Example: Design Patterns in Pacman

A look at the game:

The game consists of scenes (Main Menu, Actual Game, High-Score
List)
Each scene consists of a number of [different] objects (graphical as well
as audio)
Some objects need awareness of other objects
Some objects in each scene needs to deal with UI input



www.bth.se

in real life

7/14

Different Scenes

Problem: The game consists of several scenes (Main Menu, Actual
Game, High-Score List)
Design Pattern: Strategy
Involved Classes: Context, «abstract» Strategy, ConcreteStrategy*
Pacman: Game, «abstract» BasicScene, MenuScene, GameScene



www.bth.se

in real life

8/14

Creating Objects for different Scenes

Problem: Set up all objects necessary for each Scene
Design Pattern: Builder
Involved classes: Director, «abstract» Builder, ConcreteBuilder*
Pacman: MenuScene/GameScene, «abstract» WorldCreator,
GameCreator, MenuCreator

Design Pattern: Factory Method
Involved classes: Creator (with «abstract»FactoryMethod()),
ConcreteCreator (with instantiated FactoryMethod())*
Pacman: Scene (with «abstract»createObjects()), GameCreator
(with instantiated createObjects()), . . .



www.bth.se

in real life

9/14

Behaviour of Ghosts I

Problem: Each ghost behaves in a different way.
Design Pattern: Strategy
Involved Classes: Context, «abstract» Strategy, ConcreteStrategy*
Pacman: Ghost, «abstract» GhostMovementStrategy, BlinkyStrategy,
InkyStrategy, PinkyStrategy, ClydeStrategy



www.bth.se

in real life

10/14

Only one Audio/Graphics/World

Problem: Avoid creating more than one instance of AudioManagement,
GraphicsManagement, World
Design Pattern: Singleton
Involved Classes: Singleton (with static getInstance(), private
constructor)
Less Optional Alternative: Coding Pattern: Only create stuff in one
place, keep central repository with pointers to these objects.



www.bth.se

in real life

11/14

Redirecting Input

Problem: Different objects are interested in UI input
Design Pattern: Observer
Involved Classes: Observable, Observer
Pacman: InputManager, PacmanObject, MainMenuObject



www.bth.se

in real life

12/14

Behaviour of Ghosts II

Problem: When pacman eats supercandy, the behaviour of the ghosts
change
Design Pattern: State
Involved Classes: Context, «abstract» State, ConcreteState*
Pacman: Ghost, «abstract» GhostState, GhostNormalState (see
above, GhostStrategy), GhostChasedState



www.bth.se

in real life

13/14

Architecture Patterns

Examples of Systems:

Data processing, e.g. a Compiler
Interactive System, e.g. a Time Management Program
Pluggable Architecture, e.g. a Service System

Discuss: Suitable Architectures
Discuss suitable architectures for these types of systems



www.bth.se

in real life

13/14

Architecture Patterns

Examples of Systems:

Data processing, e.g. a Compiler
Interactive System, e.g. a Time Management Program
Pluggable Architecture, e.g. a Service System

. . . imposed with different quality requirements:
Performance: High Throughput
Flexibility / Continuous Deployment

Discuss: Suitable Architectures
Discuss suitable architectures for these types of systems



www.bth.se

in real life

14/14

Discuss: When to worry about Design
Patterns

When should you introduce patterns into your system?
GRASP patterns
Design Patterns
Architectural Patterns


	Classroom

