Design Patterns

Mikael Svahnberg’

April 3, 2017

"Mikael.Svahnberg@bth.se



www.bth.se

e Responsibility-Driven Design

in real life

Responsibility for

@ Doing something (e.g. a calculation)

@ Creating other objects

@ Initiating an action in another object

@ Controlling and coordinating other objects
Responsibility for

@ Knowing about private encapsulated data

@ Knowing about related objects

@ Knowing about things it can derive or calculate



www.bth.se

o Levels of Patterns

2.

N
R

S
“BTR*
in real life

Different levels:
@ Architecture
e Systems, subsystems
@ Design
o Classes, groups of classes
@ Idioms
@ One class, functions within one class
e GRASP

e In some sense orthogonal
e Learning aid for OO Design
e Advice for Assigning Responsibilities



www.bth.se

o GRASP Patterns

“BTH
in real life

(Listed on the inside of the book cover)
@ Information Expert
@ Creator
@ Controller

Low Coupling

High Cohesion

Polymorphism

Pure Fabrication

Indirection

Protected Variations



www.bth.se

e Example: GRASP Patterns

I
£
% S
2. S
“BTH®
in real life

1.32 Flight
m=

@

©Luggage
 —
 —

Discuss

@ Who should calculate the cost of a Booking?

@ Who should be responsible for creating a Ticket?

@ Why should a Passenger not be aware of the F1ight?

@ How should a Passenger interact with this system when booking a trip?
@ How would you implement first, business, and third class?




www.bth.se

e Example: Design Patterns in Pacman

A look at the game:

@ The game consists of scenes (Main Menu, Actual Game, High-Score
List)

@ Each scene consists of a number of [different] objects (graphical as well
as audio)

@ Some objects need awareness of other objects

@ Some objects in each scene needs to deal with Ul input



www.bth.se

e Different Scenes

in real life

@ Problem: The game consists of several scenes (Main Menu, Actual
Game, High-Score List)

@ Design Pattern: Strategy
@ Involved Classes: Context, «<abstract» Strategy, ConcreteStrategy*
@ Pacman: Game, «abstract» BasicScene, MenuScene, GameScene

aContexts wdbstractstrategys
Game BasicScene

7R

aStrategys aStrategy»
MenuSscene GameScene




www.bth.se

w8 Creating Objects for different Scenes

in real life

@ Problem: Set up all objects necessary for each Scene
@ Design Pattern: Builder
@ Involved classes: Director, «abstracty» Builder, ConcreteBuilder*

@ Pacman: MenuScene/GameScene, «abstracty» WorldCreator,
GameCreator, MenuCreator

@ Design Pattern: Factory Method

@ Involved classes: Creator (with <abstractsFactoryMethod()),
ConcreteCreator (with instantiated FactoryMethod())*

@ Pacman: Scene (with <abstractscreateObjects()), GameCreator
(with instantiated createObjects()), ...



www.bth.se

o Behaviour of Ghosts |

in real life

@ Problem: Each ghost behaves in a different way.
@ Design Pattern: Strategy
@ Involved Classes: Context, «abstract» Strategy, ConcreteStrategy*

@ Pacman: Ghost, «abstract» GhostMovementStrategy, BlinkyStrategy,
InkyStrategy, PinkyStrategy, ClydeStrategy



www.bth.se

Only one Audio/Graphics/World

@ Problem: Avoid creating more than one instance of AudioManagement,
GraphicsManagement, World

@ Design Pattern: Singleton

@ Involved Classes: Singleton (with static getlnstance(), private
constructor)

° Coding Pattern: Only create stuff in one
place, keep central repository with pointers to these objects.



www.bth.se

8 Redirecting Input

“BTH
in real life

@ Problem: Different objects are interested in Ul input
@ Design Pattern: Observer

@ Involved Classes: Observable, Observer
@ Pacman: InputManager, PacmanObject, MainMenuObject



www.bth.se

e Behaviour of Ghosts Il

in real life

@ Problem: When pacman eats supercandy, the behaviour of the ghosts
change

@ Design Pattern: State
@ Involved Classes: Context, «<abstract» State, ConcreteState*

@ Pacman: Ghost, <abstract» GhostState, GhostNormalState (see
above, GhostStrategy), GhostChasedState



www.bth.se

e Architecture Patterns

Examples of Systems:

@ Data processing, e.g. a Compiler
@ Interactive System, e.g. a Time Management Program
@ Pluggable Architecture, e.g. a Service System

Discuss: Suitable Architectures
Discuss suitable architectures for these types of systems




www.bth.se

e Architecture Patterns

Examples of Systems:
@ Data processing, e.g. a Compiler
@ Interactive System, e.g. a Time Management Program
@ Pluggable Architecture, e.g. a Service System
... imposed with different quality requirements:
@ Performance: High Throughput
@ Flexibility / Continuous Deployment

Discuss: Suitable Architectures
Discuss suitable architectures for these types of systems




www.bth.se

e Discuss: When to worry about Design
= Patterns

When should you introduce patterns into your system?
@ GRASP patterns
@ Design Patterns
@ Architectural Patterns



	Classroom

