
www.bth.se

in real life

1/13

Mapping
Design to Code

Mikael Svahnberg1

2016-04-21

1Mikael.Svahnberg@bth.se



www.bth.se

in real life

2/13

Example: From Class Diagram to
Code



www.bth.se

in real life

3/13

Example: From Interaction Diagrams
to Code



www.bth.se

in real life

4/13

Example: Collections



www.bth.se

in real life

5/13

Discuss: Order of Implementation

In which order should classes be implemented?
Larman: “Least coupled to most coupled”
Other suggestions:

Use case per use case, create stubs first, fill them out as you go.
First write test cases per use case, then add methods to classes (and create
classes) to pass the tests.
First write interfaces for all classes, then inherit and implement the classes



www.bth.se

in real life

6/13

Task

Dictionary
Write a dictionary program where you have words and their definitions.

Users shall be able to browse all words.
Users shall be able to search for words
Users shall be able to search for definitions.
The system shall maintain a log of activities.
Other requirements:

The system shall use a graphical user interface
The system shall store the words and their definitions between sessions.



www.bth.se

in real life

7/13

Conceptual Model



www.bth.se

in real life

8/13

Class Diagram I

Note
Views are loosely connected to Controller (pointer given via
setController())
Views have no direct connection to the Dictionary.

Controller ensures views “behave”.
Dictionary ensures integrity of Data Model

Controller loosely connected to Dictionary (pointer given to constructor)



www.bth.se

in real life

9/13

Class Diagram II

Note
Views track all changes (CRUD – Create, Remove, Update, Delete)
What if I just want to select a different word to display?

OutputInterface to keep track of which word to display
Keeps Controller ignorant of concrete views (dependency injection)



www.bth.se

in real life

10/13

Class Diagram III



www.bth.se

in real life

11/13

Class Diagram IV



www.bth.se

in real life

12/13

Class Diagram: setup method

public static void start::setup(MainGUI theGUI) {
// Create Dictionary
Dictionary theDict = new Dictionary("dict.txt");
debugDict(theDict); // Make sure there is stuff in it.

// Create Views
LogView lv=new LogView();
WordView wv=new WordView();
WordDefinitionView wdv=new WordDefinitionView();

// Initialise views where necessary
wv.getWords(theDict);

// Create and Connect the Controller
DictionaryController dc=new DictionaryController(theDict, wdv);
lv.setController(dc);
wv.setController(dc);
wdv.setController(dc); // Circular, but ok

// Add stuff to GUI
// theGUI.addView(lv) // skip the LogView; it prints to console/file
theGUI.addView(wv);
theGUI.addView(wdv);

// Connect views to dictionary, so that changes are reflected
theDict.addObserver(lv);
theDict.addObserver(wv);
theDict.addObserver(wdv);

}



www.bth.se

in real life

13/13

Discussion: Order of Implementation

Use Cases
Create Word
Read Word
(Search)
Update Word
Delete Word

Class Diagram:


	Warmup
	Dictionary Example

