
www.bth.se

in real life

1/26

Introduction to Software
Architectures

Mikael Svahnberg1

2017-04-03

1Mikael.Svahnberg@bth.se



www.bth.se

in real life

2/26

SE Challenges

Reduce Development Cost – Deliver on time, within budget
Increase System Quality – . . . with the right quality
Decrease Maintenance Costs
Reduce Time-to-Market



www.bth.se

in real life

3/26

Decisions

Balancing all stakeholders result in a number of Business and
Technical Decisions
Software architecting is about identifying which decisions are
necessary, and finding solutions that satisfy all stakeholders.

Decisions are the Architecture
I would go as far as to say that these decisions are the architecture!
The rest is just an instantiation of the architecture.



www.bth.se

in real life

4/26

How can the Architecture Help?

The architecture is a tool for

Understanding
Planning
Communicating
Predicting and Evaluating Quality
Identifying Reuse



www.bth.se

in real life

5/26

Influences on Architecture

Customer Requirements, of course
Developing Organisation

e.g., business goals
Organisational structure
Available expertise (the architect’s experience)

Technical Environment



www.bth.se

in real life

6/26

The Architecture Business Cycle

The architecture is influenced by stakeholders, developing organisation,
technical environment, architect’s experience, etc.
Likewise, the architecture influences all of the above.
A software architecture

Manifests early design decisions
Constrains an implementation
Dictates organisational struture
Impacts change management

A developed system
Adds to previous experience
May affect business goals
Refines development organisation (Process improvement)
Affects customer requirements
Provides a reusable software base



www.bth.se

in real life

7/26

A “Good” Software Architecture

Is based on conscious decisions
Is evaluated to ensure that it satisfies the specific goals for the system
Pays attention to current and future quality attributes
Is well documented, with traceability to the architecture decisions
Features well defined modules/(components), with well defined
/interfaces and well defined responsibilities
Is restricted to a small set of interaction patterns that are consistently
used.



www.bth.se

in real life

8/26

Software Architecture Defined

First Definition: Boxes and Lines
What is the nature of the elements (boxes)?
What are the responsibilities of the elements?
What is the siginificance of the connections (lines)?
What is the significance of the layout?

Second Definition: Add semantics (provide legend)
What is the significance of the layout?
What are the interfaces of the elements?
How does the architecture operate at runtime?
How do we build it?

Third Definition:

The software architecture of a program or computing system is the
structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and
the relationships among them.



www.bth.se

in real life

9/26

Structure and Views

Bass et al. (2012) Kruchten (1994):

Logical View Development 
View

Process View Physical View

Scenarios

Hofmeister et al (2000):
Conceptual View
Module View
Execution View
Code View
Global Analyis (as scenarios)



www.bth.se

in real life

10/26

Which View to Start with?

None. Remember: Architecture === Decisions
1 What requirements will have an architectural impact?
2 What strategies do you have to address these requirements?
3 Then you decide which viewpoint to address them in.



www.bth.se

in real life

11/26

Architecture Styles and Patterns

“Design Patterns for Software Architectures”
Common styles:

Layered
Pipes and Filters
Model View Controller
Centralised vs Distributed
Microkernel
Blackboard
Broker

Examples of Systems
List and discuss examples of systems that uses each style.



www.bth.se

in real life

12/26

Quality Attribute Scenarios

Quality Attribute Scenarios:

Source:
Users

Stimulus:
Initiate
Transactions

Environment:
Under normal
operations

Response:
Transactions
are processed

Response
Measure:
With an average
latency of two
seconds

Question
How can you – at an architecture level – solve this?



www.bth.se

in real life

13/26

Architecture Tactics

Book; Bass, Clements and Kazman, Software Architecture in Practice.
A tactic is a generic solution for addressing a (common) quality
attribute).
Remember Architecture === Decisions:

1 What requirements will have an architectural impact?
2 What strategies do you have to address these requirements?
3 Then you decide which viewpoint to address them in.



www.bth.se

in real life

14/26

Example Architecture Tactics: Avail-
ability



www.bth.se

in real life

15/26

Purposes of Architecture Evaluation

Early Architecture Evaluation 2

Do we meet the quality requirements on the system?
Do all stakeholders share a common understanding of the system?
Are all requirements accounted for?
Are there any weak spots in ther architecture?
Can the system (and/or the architecture) be improved?
Does the development team have all the necessary resources?
Should we let this project continue?

Late Architecture Evaluation
Hard metrics.
How did we do? What needs to be improved for the next release?

2M. Lindvall, R. T. Tvedt, and P. Costa. An empirically-based process for software
architecture evaluation. Empirical Software Engineering, 8:83–108, 2003.



www.bth.se

in real life

16/26

Early Architecture Evaluation Methods

Experiences and Logical Reasoning
Scenario-Based

Examples: SAAM, ATAM, Global Analysis, BTH-way

Simulation-based
Build parts of the architecture / Build models of the architecture
Architecture description languages
Examples: AADL, Aesop, ArTek, C2, Darwin, LILEANNA, MetaH, Rapide,
SADL, UniCon, Weaves, Wright, ACME, . . .

Based on Mathematical models
Often domain-specific
Example: ABAS (ATAM)

Other
Example: Software Inspections



www.bth.se

in real life

17/26

SAAM: Software Architecture Analysis
Method

R. Kazman, L. Bass, M. Webb, and G. Abowd. Saam: A method for analyzing the properties of software architectures. In Proceedings of the 16th international conference on

Software engineering, pages 81–90. IEEE Computer Society Press, 1994.

1 Develop Scenarios
2 Describe Candidate Architecture
3 Classify Scenarios

Directly supported vs. Indirectly supported
4 Perform Scenario Evaluations for indirect

scenarios
Needed changes to support scenario, cost of
changes.
C.f. Architecture Transformations

5 Reveal Scenario Interaction
Scenarios requiring changes in the same
components → component overload?

6 Overall Evaluation
Prioritise scenarios

.



www.bth.se

in real life

18/26

QASAR



www.bth.se

in real life

19/26

BTH 4-hour Architecture Evaluation

Step Name Time
1 Introduction 10 min
2 Identify Quality Requirements 30 min
3 Elicit Scenarios 50 min
4 Architecture presentation 2 x 15 min
5 Break 20 min
6 Scenario and Architecture Analysis 2 x 40 min
7 Conclusion 15 min



www.bth.se

in real life

20/26

Evaluation Experiences

Size of Evaluation Team 3

Clear Objective
Present Recipients of Evaluation Document
Moderate Pursuit of Issues
Use Extreme Scenarios
The Impact of the Project Manager
Summarise Often

Also:
Guidance – not Lecturing
Avoid Grading Tension
Make the Architecture Matter
Encourage Peer Evaluation

3M. Svahnberg and F. Mårtensson. Six years of evaluating software architectures in student
projects. The Journal of Systems & Software, 80(11):1893–1901, 2007.



www.bth.se

in real life

21/26

Size of Evaluation Team

3-4 persons in the Evaluation Team
Fewer is harder
More may intimidate the evaluatees

Task division:
One person documents
The others take turn in thinking / pursuiting issues



www.bth.se

in real life

22/26

Clear Objective of Evaluation

Including: Present Recipients of Evaluation

Open target == no end criterion
Need clear objective to decide on most appropriate method and most
appropriate participants
Avoid objective guessing

For You are here to fail us and stop the project!/

Make sure there are clear benefits for the project



www.bth.se

in real life

23/26

Moderate Pursuit of Issues

Conflict: You are there to find flaws, but if you do not know when to “let
go” the project will become defensive and uncooperative.
Knowing when to back down is not only a technical skill.
Difficult to identify and investigate all ripple effects.
→ Leave warnings in the evaluation documentation.



www.bth.se

in real life

24/26

Use Extreme Scenarios

The absurd may jolt the project into defining limits.
Typically, investigate one normal scenario and several extremes, where
the boundaries of the requirements are probed.
Be open to pursuit promising paths, e.g. with even more extreme
scenarios even if you had not initially planned them.



www.bth.se

in real life

25/26

The Impact of the Project Manager

It is absolutely vital that the project manager understands the benefits
of the evaluation.
The project manager is the lest technical of the project members (?)
Perceives pressure from mid-level management to produce
Group issues: Do the other project members dare speak up against
their project manager?



www.bth.se

in real life

26/26

Summarise Often

Keep the evaluation and the project “on track”
Make sure that found issues are clearly presented and understood.


	Classroom

