
www.bth.se

in real life

1/28

Quality Attributes

Mikael Svahnberg1

1Mikael.Svahnberg?bth.se
School of Computing

Blekinge Institute of Technology

April 6, 2017



www.bth.se

in real life

2/28

Quality

What is quality?



www.bth.se

in real life

3/28

Requirement vs Attribute

A quality attribute is always present
A quality requirement puts a constraint on an attribute
A quality requirement describes a service level of the system (or, more
likely, a functional requirement).



www.bth.se

in real life

4/28

Architecture and Quality Attributes

Functionality is “easy” to implement.
Quality requirements may sometimes have impact on the
implementation
More often, it impacts the software structure (=the software
architecture).
. . . And yet, the architecture can only describe a potential for achieving
a particular quality level.



www.bth.se

in real life

5/28

Examples

Usability
¬Button layout etc.
Certain functions (e.g. undo, data re-use).

Modifiability
How is functionality divided?
. . . In relation to likely change scenarios.

Performance
communication between components
division of functionality between components
allocation of shared resources
¬choice of algorithms



www.bth.se

in real life

5/28

Examples

Usability
¬Button layout etc.
Certain functions (e.g. undo, data re-use).

Modifiability
How is functionality divided?
. . . In relation to likely change scenarios.

Performance
communication between components
division of functionality between components
allocation of shared resources
¬choice of algorithms



www.bth.se

in real life

5/28

Examples

Usability
¬Button layout etc.
Certain functions (e.g. undo, data re-use).

Modifiability
How is functionality divided?
. . . In relation to likely change scenarios.

Performance
communication between components
division of functionality between components
allocation of shared resources
¬choice of algorithms



www.bth.se

in real life

5/28

Examples

Usability
¬Button layout etc.
Certain functions (e.g. undo, data re-use).

Modifiability
How is functionality divided?
. . . In relation to likely change scenarios.

Performance
communication between components
division of functionality between components
allocation of shared resources
¬choice of algorithms



www.bth.se

in real life

5/28

Examples

Usability
¬Button layout etc.
Certain functions (e.g. undo, data re-use).

Modifiability
How is functionality divided?
. . . In relation to likely change scenarios.

Performance
communication between components
division of functionality between components
allocation of shared resources
¬choice of algorithms



www.bth.se

in real life

5/28

Examples

Usability
¬Button layout etc.
Certain functions (e.g. undo, data re-use).

Modifiability
How is functionality divided?
. . . In relation to likely change scenarios.

Performance
communication between components
division of functionality between components
allocation of shared resources
¬choice of algorithms



www.bth.se

in real life

5/28

Examples

Usability
¬Button layout etc.
Certain functions (e.g. undo, data re-use).

Modifiability
How is functionality divided?
. . . In relation to likely change scenarios.

Performance
communication between components
division of functionality between components
allocation of shared resources
¬choice of algorithms



www.bth.se

in real life

5/28

Examples

Usability
¬Button layout etc.
Certain functions (e.g. undo, data re-use).

Modifiability
How is functionality divided?
. . . In relation to likely change scenarios.

Performance
communication between components
division of functionality between components
allocation of shared resources
¬choice of algorithms



www.bth.se

in real life

5/28

Examples

Usability
¬Button layout etc.
Certain functions (e.g. undo, data re-use).

Modifiability
How is functionality divided?
. . . In relation to likely change scenarios.

Performance
communication between components
division of functionality between components
allocation of shared resources
¬choice of algorithms



www.bth.se

in real life

5/28

Examples

Usability
¬Button layout etc.
Certain functions (e.g. undo, data re-use).

Modifiability
How is functionality divided?
. . . In relation to likely change scenarios.

Performance
communication between components
division of functionality between components
allocation of shared resources
¬choice of algorithms



www.bth.se

in real life

5/28

Examples

Usability
¬Button layout etc.
Certain functions (e.g. undo, data re-use).

Modifiability
How is functionality divided?
. . . In relation to likely change scenarios.

Performance
communication between components
division of functionality between components
allocation of shared resources
¬choice of algorithms



www.bth.se

in real life

6/28

Levels of Quality Attributes

Business Qualities
Time-to-Market, Cost and Benefit, Projected Lifetime, Targeted market,
Rollout schedule, Legacy system integration
Also: Product portfolio, Requirements from Society, etc.1

System Quality Attributes
Availability, Modifiability, Performance, Security, Testability, Usability
ISO 9126: Functionality, Reliability, Usability, Efficiency, Maintainability,
Portability

Architecture Qualities
Conceptual Integrity, Correctness and Completeness, Buildability

1T. Gorschek and A. M. Davis. Requirements engineering: In search of the dependent
variables. Information and Software Technology, 50(1-2):67-75, 2008.



www.bth.se

in real life

7/28

Achieving Quality Attributes (I)

In order to achieve a a certain level for a quality attribute we need a
controlled process to lead us towards an architecture decision.
Quality Attribute Scenarios is one building block for this:

Source:
Users

Stimulus:
Initiate
Transactions

Environment:
Under normal
operations

Response:
Transactions
are processed

Response
Measure:
With an average
latency of two
seconds



www.bth.se

in real life

8/28

Example of Quality Attribute Scenario:
Performance

Source:
Users

Stimulus:
Initiate
Transactions

Environment:
Under normal
operations

Response:
Transactions
are processed

Response
Measure:
With an average
latency of two
seconds

Aspect Value
Source Users
Stimulus Initiate transactions: 1000 per minute
Artifact System
Environment Normal mode (c.f. overload mode)
Response Transactions are Processed
Response Measure Latency of 2s (deadline, throughput, jitter, miss rate, data loss, etc)



www.bth.se

in real life

9/28

Achieving Quality Attributes (II)

The next step is to find a solution to a Quality Attribute Scenario.
To this, we have tactics.
A tactic can be (but is not limited to) a design pattern, an architecture
pattern, or an architectural strategy.



www.bth.se

in real life

10/28

Other Concerns

One may be led to believe that if only the quality requirements are
taken care of, the rest will follow.
Obviously, this is not the case.
Hofmeister et al.2 lists three sources of concerns3:

Organisational factors:
Management (cf. business qualities above)
Staff skills, interests, strenghts, weaknesses
Process and development environment
Development schedule
Development Budget

Technological factors
Product factors

2C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture. Addison-Wesley,
Reading MA, 2000.

3Please note the overlap to the categories from Bass et al.



www.bth.se

in real life

10/28

Other Concerns

One may be led to believe that if only the quality requirements are
taken care of, the rest will follow.
Obviously, this is not the case.
Hofmeister et al.2 lists three sources of concerns3:

Organisational factors:
Technological factors

General-purpose hardware
Domain-specific hardware
Software technology
Architecture technolog
Standards

Product factors

2C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture. Addison-Wesley,
Reading MA, 2000.

3Please note the overlap to the categories from Bass et al.



www.bth.se

in real life

10/28

Other Concerns

One may be led to believe that if only the quality requirements are
taken care of, the rest will follow.
Obviously, this is not the case.
Hofmeister et al.2 lists three sources of concerns3:

Organisational factors:
Technological factors
Product factors

Functional Features
User Interface
Performance
Dependability
Failure detection, reporting, recovery
Service
Product cost

2C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture. Addison-Wesley,
Reading MA, 2000.

3Please note the overlap to the categories from Bass et al.



www.bth.se

in real life

11/28

Software Solutions

In a course (or any hypothetical system that is never going to be built), it
is often easy to solve issues simply by allowing more or better
hardware.
In industry, the hardware constraints are real and hard.
For example (using low estimates):

Require 1GB more internal memory in the computer = 17 Euro.
Ship 1000 units/year = 17 000 Euro.
Expected lifespan of system: 10 years = 170 000 Euro.
Ensure availability of the right memory modules for the hardware platform
for the coming 10 years: lots more.

Contrast this with one well payed swedish developer working full-time
for one year to reduce the memory consumption in software: 75000
Euro (including tax and social fees).



www.bth.se

in real life

12/28

Architectures for different purposes

Regular desktop applications
Embedded applications
Enterprise applications
Applications for Android / IOS
Cloud applications
Service-Oriented Architectures (SOA)
Software Ecosystems
. . .



www.bth.se

in real life

13/28

What can differ?

Instantiation into different viewpoints?
- Trivial, the views will differ between each application anyway.

Factors, Issues and Strategies?
- Also trivial, for the same reason.

The importance of certain factors (e.g. the importance of certain quality
requirements).
Typical choices of strategies for a particular domain.
Typical choices of architecture styles for a particular domain (may be
subordinate to the aforementioned)



www.bth.se

in real life

13/28

What can differ?

Instantiation into different viewpoints?
- Trivial, the views will differ between each application anyway.

Factors, Issues and Strategies?
- Also trivial, for the same reason.

The importance of certain factors (e.g. the importance of certain quality
requirements).
Typical choices of strategies for a particular domain.
Typical choices of architecture styles for a particular domain (may be
subordinate to the aforementioned)



www.bth.se

in real life

13/28

What can differ?

Instantiation into different viewpoints?
- Trivial, the views will differ between each application anyway.

Factors, Issues and Strategies?
- Also trivial, for the same reason.

The importance of certain factors (e.g. the importance of certain quality
requirements).
Typical choices of strategies for a particular domain.
Typical choices of architecture styles for a particular domain (may be
subordinate to the aforementioned)



www.bth.se

in real life

13/28

What can differ?

Instantiation into different viewpoints?
- Trivial, the views will differ between each application anyway.

Factors, Issues and Strategies?
- Also trivial, for the same reason.

The importance of certain factors (e.g. the importance of certain quality
requirements).
Typical choices of strategies for a particular domain.
Typical choices of architecture styles for a particular domain (may be
subordinate to the aforementioned)



www.bth.se

in real life

13/28

What can differ?

Instantiation into different viewpoints?
- Trivial, the views will differ between each application anyway.

Factors, Issues and Strategies?
- Also trivial, for the same reason.

The importance of certain factors (e.g. the importance of certain quality
requirements).
Typical choices of strategies for a particular domain.
Typical choices of architecture styles for a particular domain (may be
subordinate to the aforementioned)



www.bth.se

in real life

13/28

What can differ?

Instantiation into different viewpoints?
- Trivial, the views will differ between each application anyway.

Factors, Issues and Strategies?
- Also trivial, for the same reason.

The importance of certain factors (e.g. the importance of certain quality
requirements).
Typical choices of strategies for a particular domain.
Typical choices of architecture styles for a particular domain (may be
subordinate to the aforementioned)



www.bth.se

in real life

13/28

What can differ?

Instantiation into different viewpoints?
- Trivial, the views will differ between each application anyway.

Factors, Issues and Strategies?
- Also trivial, for the same reason.

The importance of certain factors (e.g. the importance of certain quality
requirements).
Typical choices of strategies for a particular domain.
Typical choices of architecture styles for a particular domain (may be
subordinate to the aforementioned)



www.bth.se

in real life

14/28

Embedded Applications I

This is a large and diverse field, and there are many quality requirements
that may be in focus for different applications. However, there are some
overall constraints that hold true for most applications in this domain:

Hardware cost
- Keep memory footprint low
- Keep CPU usage low
- Optimise for wear and tear

Hardware availability for entire product life expectancy
- Keep memory and CPU usage low.
- Cull system regularly to remove stuff that is no longer needed.
- Low-cost growth mechanisms.



www.bth.se

in real life

15/28

Embedded Applications II

Testability
- Testable software – the usual stuff
- Testable hardware – system test software, test harness, etc.
- Report error states (e.g. through flashing diodes).

Reliability
- Error detection
- Error recovery
- Report error states visibly (e.g. on-line, flashing diodes)



www.bth.se

in real life

16/28

Embedded Applications III

Energy consumption
- Low-effort computing
- Reduce display time and display size (if any)
- Powersave modes
- Lazy evaluations – deferred processing

Network communications
- Standard communications platform
- Robust transfers (e.g. in outdoor environments)
- Operate by “dead reckoning”



www.bth.se

in real life

17/28

Enterprise Applications I

Enterprise architectures only has very little to do with software
architecture – and yet it has everything to do with the software
architecture.
Organisational, Technological, and Product factors can be considered
subsets, or limited views, of the enterprise architecture.



www.bth.se

in real life

18/28

Enterprise Applications II:
List of Concerns

Persistent Data4

Large amounts of data
Large scale concurrent access
Many data views (user interface screens)
Need to integrate with other enterprise applications
Multiple interpretations of data (conceptual dissonance)
Complex business logic rules (business “illogic”)
Various types of enterrpise systems
{B,C}2{B,C}∧B,C ∈ {s,m, l ,xl ,xxl}

4M. J. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, Boston MA,
2003.



www.bth.se

in real life

19/28

Enterprise Applications IV:
Typical Architecture Styles

Function-centric (Transaction script)
Domain concept-centric (Domain model)
Data representation-centric (Table module)

. . . I could go on, but the book (Fowler 2003) is rather thick and full of
patterns that dig deeper and deeper into the application.



www.bth.se

in real life

20/28

Android/IOS Applications

Somewhere between embedded and desktop applications. Any number of
quality concerns may be relevant for any application. The platform itself
imposes some concerns.

Hardware:

Restrict battery usage

Small screen

Unorthodox input methods (e.g. thumb)

Not the fastest CPU, restricted RAM.

Variety of hardware available on a
particular phone model.

Software:

Interruptible applications (e.g. for
phone calls)

Interoperable applications

Reuse wherever possible, yet enable
customisation.

Intuitive user experience that supports
how users operate their handheld
device (e.g., avoid deep meny
hierarchies).

Varity of services available on a
particular phone.



www.bth.se

in real life

21/28

A/IOS Applications: Example of En-
ergy Needs

Jon Summers, University of Leeds studied energy consumtion of
Gangnam Style
Downloaded 1.8∗109 times
4.13 minutes, 17MB
Energy consumption for streaming it: 0.0002 kWh per minute.

∑ 312 GWh !
That’s more than 10 million Africans have for their whole nation (e.g.
the whole country of Burundi) in a year!



www.bth.se

in real life

21/28

A/IOS Applications: Example of En-
ergy Needs

Jon Summers, University of Leeds studied energy consumtion of
Gangnam Style
Downloaded 1.8∗109 times
4.13 minutes, 17MB
Energy consumption for streaming it: 0.0002 kWh per minute.

∑ 312 GWh !
That’s more than 10 million Africans have for their whole nation (e.g.
the whole country of Burundi) in a year!



www.bth.se

in real life

21/28

A/IOS Applications: Example of En-
ergy Needs

Jon Summers, University of Leeds studied energy consumtion of
Gangnam Style
Downloaded 1.8∗109 times
4.13 minutes, 17MB
Energy consumption for streaming it: 0.0002 kWh per minute.

∑ 312 GWh !
That’s more than 10 million Africans have for their whole nation (e.g.
the whole country of Burundi) in a year!



www.bth.se

in real life

22/28

A/IOS Applications:
Addressing Concerns

Battery usage
- Event-driven applications (BroadcastReceivers and IntentFilters)

Interruptible applications, “flat” user interfaces
- Loosely connected applications
- Event-driven applications
- Application as a set of screens, each screen a separate process
- Separate Activities (interaction-based) from Services (runs in the

background)
- Persistent storage as a system service

interoperable applications, reuse wherever possible, variety of services
available, yet customisable

- Late binding
- Loosely connected applications
- Event-driven applications
- Common communication platform: Intent and IntentFilters.
- Separate Activities and Services from ContentProviders.



www.bth.se

in real life

23/28

Cloud Applications

The concept of a cloud application is simple: It is essentially a
client-server solution, where rather than maintaining the server
yourself, you rent virtual servers from a cloud vendor.
One definition5 of a cloud service

- The service is accessible via a web browser or web services API
- Zero capital expenditure is necessary to get started
- You pay only for what you use as you use it.

Another definition 6

- Pooled Resources, Virtualisation, Elasticity, Automation, Metered Billing

5G. Reese, Cloud Application Architectures, O’Reilly, 2009.
6Rosenberg et al., The Cloud at your Service, Manning Publications co., 2011.



www.bth.se

in real life

24/28

Levels of Cloud Services

Software as a Service (SaaS)
- e.g. Google Docs, Yahoo!, SalesForce.com, Valtira, etc.

Platform as a Service (PaaS)
- e.g. Google App Engine, Microsoft Azure, etc.

Infrastructure as a Service (IaaS)
- e.g. Amazon Elastic Compute Cloud (EC2), Microsoft Azure,

RackSpace, etc.
. . .



www.bth.se

in real life

25/28

Factors that “push” you towards the
cloud

Transference – Move your on-site solution as-is to the cloud for e.g.
economic reasons.

- Challenges: Setting up a similar environment in the cloud as you have
locally.
Internet Scale – Scaling up to handle more users.

- Challenges: Database design may become a bottleneck.
Burst Compute – Large swings in capacity requirements.

- Challenges: Strategy for load balancing, database access.
Elastic Storage – Scaling up to handle (much) more data.

- Challenges: need also to consider where the data is processed.



www.bth.se

in real life

26/28

Challenge: Internet Scale

Issue:
Your database’s working sets are too large
Too many writes

Solution:
Partition the data (Sharding)



www.bth.se

in real life

27/28

Challenge: Cloudbursting

Issue:
Occasional peaks of traffic that pushes infrastructure over its capacity

Solution:
Use on-demand capacity (Cloud) for the peaks
Load-balancer that divides work between in-house servers and cloud
servers
Render static data views



www.bth.se

in real life

28/28

Summary

Each application has its own set of unique challenges, but the class of
applications may also have typical challenges and quality concerns
These shape the solutions. Sometimes only a little, sometimes by
dictating a certain architecture style.
In this lecture a select few application classes have been introduced:
Embedded, Mobile, Cloud, and Ecosystems.
Embedded and Mobile application constraints are due to technical
limitations.
Cloud application constraints come from the users.


