PA1415 Programvarudesign

Main Exam

Mikael Svahnberg (0455-385811), Ludwik Kuzniarz

2016-05-29
Points
(Filled in by the Marker)
Question: | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | SUM
Max Points: | 4 4 4 4 4 4 4 4 4 4 6 4 4 4 4 4 66
Points:
Grade:

Instructions

Please Remember to provide an answer in each checkbox [|.

Marking All multiple choice questions give four points. Each wrong answer in a question subtracts one point,
but never below zero.

Diagrams In some questions we ask you to draw a diagram (for example a class diagram or an interaction
diagram). Please use a separate paper to make a draft first, and then redraw them in the marked area on the
exam paper. Try to arrange the elements (and especially connecting lines) so that it is easy to read.

Allowed Books: English to Swedish Dictionary.

Allowed Material: Pen, Eraser, Ruler, Candy.

Good Luck!

Question 1. Requirements Engineering 4p
Please study these requirements, and then assess each of the claims below:

ID: R1

Title: Visual Feedback

Description: As a user I want to see a response from the system within 3 seconds so that I know it is
working.

ID: R2
Title: Send Message
Description: The system shall immediately deliver messages between users of the system.

ID: R3
Title: Autologout
Description: The system shall automatically log out inactive users.

Claims: (Please mark each claim as true T or false F)

[T] Requirement R1 is testable

[T] Requirement R1 is measurable

[T] Requirement R2 is testable

[F] Requirement R2 is measurable

[T] Requirement R3 is testable

[F] Requirement R3 is measurable

Question 2. Development Methodologies 4p
Please mark each of the following statements as true T or false F':

e [F] An iteration in SCRUM usually takes two years.

e [T] If you are using a strict Waterfall process, you are not allowed to go back to previous development phases
and add more information.

[T] A backlog is a prioritised list of requirements.

[F] The maintenance phase of a software system is usually short and can be ignored if you need more time.

[T] The Unified Process (RUP) is an iterative and incremental development methodology.

[T] In Object-Oriented Analysis, you focus on the domain concepts, and not how you are going to implement
your system.

Question 3. Interaction Diagrams 4p
Please mark each of the following statements as true T or false F':

e [F] A collaboration diagram describes the interaction between classes.

e [T] The entity dbs:Bicycle is an object of the type Bicycle and the name dbs.

[F] The entity :Bicycle is a class with the name Bicycle.

[F] In a sequence diagram you list the attributes and their current values of each object under each object’s
lifeline.

[T] An interaction diagram shows the messages sent between a set of objects.

[F] You base your interaction diagrams on information you get from use case diagrams.

Question 4. Class Diagrams 4p
Please mark each of the following statements as true T or false F:

e [F] A class diagram describes the current values of the attributes in a class.

e [F] An association between two classes means that both classes have at least a pointer to the other class.

[F] Classes must have attributes.

[T] In [Class Al4— [Class B] , the 4— means that no instances of B may exist without belonging to an
instance of A.

[T] «Interface» PrinterDriver can not have any implemented methods.

[T] The class FileUtils: :SimpleCache belongs to the FileUtils package.

Question 5. State Machine Diagrams

Please mark each of the following statements as true T or false F':

e [T] State Machine Diagrams contains states, events, and transitions between states.

[T] States can be nested.

methods on the other objects.

[T] When an event occurs, it is possible to change the value of an attribute.

Question 6. Relations between Classes

Please study the following diagram, and then assess each of the claims below:

©Llser

username
password

0..200

Claims: (Please mark each claim as true T or false F)

e [F] A User may have any number of messages.

[F] There can only be 200 Messages in this system.

[F] Each Message may contain five Mentions or less.
[T] One User may mention a maximum of 1000 Users.
[F] Two Messages may have the same Mention.

[T] Each Mention mentions precisely one User.

Question 7. Coupling and Cohesion

Please mark each of the following statements as true T or false F':

4p

[T] When you are in one particular state, one single event may trigger a transition to more than one new state.

[T] The [rooms left] makeBooking / notifyPorter() transition only happens when there are rooms left and
someone makes a booking.

[F] For each state machine diagram you must make one sequence diagram to show how the involved objects calls

4P

4p

e [F] It is bad to have many associations to other classes, so it is better to do everything inside a small set of

classes.

[F] No class should have more than three associations.

[F] The more responsibilities I give a class, the higher cohesion it will have.

[F] With fewer associations, it is easier to understand what each individual class does.

[F] If T have high coupling in a system I will automatically also have high cohesion.

[T] To maintain high cohesion, it is sometimes necessary to add more classes and associations into the design.

Question 8. GRASP Patterns

Please study the following partial class diagram, and then assess each of the claims below:

© FreightHandler

addGoodsigoodsid, startAddress, destinationAddress)

NOTE: Mot all associations
or methods are modelled.

© RoutePlanner

. © Truck

findTruck(targetAddress)

©Goods

travelToltargetAddress)

goodsID
weight
dimensions

2

©Address

Claims: (Please mark each claim as true T or false F)

stop.

[T] According to the Creator pattern, FreightHandler is best equipped to create new Goods items.

[T] The FreightHandler is a Controller for ordering transportation of goods.
[F] According to the Creator pattern, Goods should be responsible for creating Address objects.
[F] FreightHandler is an Information Ezpert on ensuring that each Truck does not get too heavy.

[T] A Truck is an Information Expert on keeping track of the Goods it should contain.

4p

[F] According to the Information Expert pattern, a Truck should contain a list of Addresses where it should

Question 9. State Pattern 4p

A PinballGame can be in three states. In each of the states, a different music loop is played as follows:
e Jdle: no music is played.
e NormalPlay: music is played by calling the static method MusicOutput: :PlayNormal ().
e Multiball: music is played by calling the static method MusicOutput: :PlayMultiball().

Please complete the following class diagram using the State pattern. Please also fill in the method bodies.

©NormaIPIav

PlayMusici)

© PinballGame

(&) pinbattstate

(©) e -

@ PlayMusic()

PlayMusic()

PlayMusic()

—

NormalPlay::PlayMusic() {MusicOutput::PlayNormal ()} Iﬁ

= IdIe::PIayMusicO{]lﬁ

| PinballGame::PlayMusic() {currentState->PlayMusic(} Iﬁ

(€ mutibatilay

PlayMusic()

— MultiballPlay::PlayMusic() {MusicOutput::PlayMultiball 0} Iﬁ

Question 10. Observer Pattern 4p

A MechanicalChef is waiting for FoodOrder from one or several Waiter. Please model this in a class diagram using
the Observer pattern. Use interfaces as well as concrete classes.

Generic Solution

@ I @mdome, @ Observable

O List<Observer> myObservers;

o update{Observable) @ addObserver(Observer theDbserver)
| notifyObserversi)

uses m i
creates

@ MechanicalChef © Waiter

o update{Observable) @ FoodOrder getFoodOrder()

Observable::notifyObservers() {foreach(i:myObservers) {i.updateithis)} B.

Technically you will also need to hack the observer pattern to be able to access the FoodOrder B.

Solution using Stereotypes

© FoodOrder

«Observables ~ .
wObservers Waiter ~ .
MechanicalChef L * | o List<Observer> myObservers; MechanicalChefinit0 { foreachi.list of waiters) {i.addObserver(this)J} ™)
@ FoodOrder getFoodOrder()
s]placeidecliaien ® addOhserver(Observer theObserver)

m notifyObservers()

Waiter::notifyObservers() {foreach(i:myObservers) {i.placeOrder(this}}} B.

Partially Generic, more correct Solution

@ Wa;'rerObsemerI

" O List<Observer> myOhservers;
| |
- uses m notifyObservers()
® update(Waiter) I @ FoodOrder getFoodOrder()

@ addObserver(WaiterObserver theObserver)

© Mechanica HZhefI

1
@ updatelWaiter) I

| Waiter::notifyObservers() {foreachii:myObservers) {i.update(this)}} IL.

Question 11. Conceptual Model 6P
Please read the description below and then construct a Conceptual Model for this system. If and where applicable,

use associations, aggregation, composition, inheritance, and association attributes. Please also consider multiplicity
where stated and applicable.

At a university you have students and teachers. Both students and teachers have a name and an address
Students also have a student-id. Students attend courses, and teachers teach courses.

The university consists of between zero and five departments, that each has up to 200 courses, up to 100
teachers, and any number of students.

The department pays a salary to teachers. Teachers can be employed by between one and three depart-

ments, and would then get a separate salary from each department. Each teacher negotiates their own
unique salary.

A course consists of up to 15 lectures, one to five assignments, and two exams (main exam, and resit).
Lectures and exams have a date and time, and assignments have a start date and an end date.

Conceptual Model:

@ Person

Name
Address

il
[\
/

. \

\
©5tudent

studentlD
Attend
Teache_s/_/
15 0.5
©Lectur‘e ©Assignment
@Exam

date startDate
time endDate

Case Description

The remaining questions uses the following case. Each paragraph is numbered for easy reference in the questions.
Please read this description carefully before answering the questions below.

Dash

(1) Dash is a tool to quickly and easily transfer money to friends and to pay for things using your mobile
phone. It is developed in collaboration with a collection of swedish banks. In this description we focus
on what you can do with the application once it is installed Dash on your phone and connected it with
your bank account, and that you have BankID installed and configured. Your task is to design the
features of the system that are described below.

(2) With Dash you can transfer money to other Dash users, receive money, and view a list of previous
transactions.

(3) You transfer money by entering the mobile phone number of the recipient, the amount you want to
transfer, and a message.

(4) In order to actually execute the transaction you identify yourself using your BankID. This starts
a transfer of the specified amount from your account to the bank and account associated with the
recipient’s mobile phone number.

(5) At any point, you can abort a transaction.
(6) If there is not enough money in our account to complete the transaction, the transfer is aborted.

(7) If you want to see if you have received any money you first identify yourself yourself using your
BankID. The Dash app then displays the last transaction, including the sender of the money, the
amount received, and the message.

(8) You can get an overview of all transactions. You first have to identify yourself using your BankID,
and then the Dash app displays an overview of previous transactions. This includes both incoming and
outgoing transactions.

(9) To identify yourself using BankID, you enter a pin code. The system then connects to the BankID
server to verify your identity.

(10) If you enter the wrong pin code, the current operation is aborted.

10

Question 12. Use Case Diagram 4p

Please draw a Use Case Diagram for the Dash system. Make sure you identify all Actors as well as all Use Cases. If
applicable, you may structure your use case diagram so that some use cases include or extends other use cases.

/!

|
/’/i;;i:;e——
incllﬁ‘clﬂ
User\‘é

'

Identify using BankID

| BankIlD

include
I
|

Transfer Money

Bank

Ijst Transactions

11

Question 13. Expanded Use Case 4p

Please write an Ezpanded Use Case for the Send Payment Use Case. This use case covers the case where a Dash user
wants to send money to another Dash user (paragraphs 3 to 6 in the case description above).

Use Case: Send Payment
Primary Actor: User
Actors: Bank, BankID, receiving User

Preconditions: the User has registered with Dash.

Postcondition: Money is transferred.

Brief Description: A user initiates a transfer, enters the mobile phone number of the recipient, the amount to
transfer, and a message.

Continued on the next page

12

Basic Flow:

Actor System
1. A User initiates a transaction 2. The System indicates that it is ready to receive
information.

3. The User enters the phone number of the recipient

4. The User enters the amount

5. The User enters a message for the recipient

6. The User tells the system to start the transaction | 7. The system verifies that the given number,
amount and message are ok.

8. The system initiates the Identify Using BankID
use case

9. The system contacts the bank to transfer the
money.

10. The system notifies the receiving User about the
transaction.
NOTE: Optional!

Alternative Flows:

7. Incorrect phone number is entered. The transaction is aborted and an error message is shown.

e 8. The user fails to identify themself using BankID. The transaction is aborted and an error message is shown.

e 1-8. The user decides to abort the transaction.

e 9. There is not enough money to complete the transaction. The transaction is aborted and an error message is
shown.

13

Question 14. System Sequcence Diagram 4p

Please draw a System Sequence Diagram for the Send Payment use case. Make sure that all actors involved in the use
case are represented, including those that the system may need to contact in the course of the use case.

LA
User Banlle Bank ReceivingUser

startTransaction()

Y

enterTransaction(phone, amount, message)

Y

oint 8: Sub-use-case (Optional) :.

ask for BankID pin

! IdentifyWithBankid(pin) |

! Verify(fromUser, pin)

: Back to main Use case I;

i
! Transfer(fromUser.accdunt, tolser.account, amount) !
2

N mif\f(fromUser.phone,I amount, message)

1 [,
«!| Optional!
I-(...]]

User BankID Bank ReceivingUser

14

Question 15. Interaction Diagram

Please draw an Interaction Diagram (Sequence or Communication Diagram) for
the ListPreviousTransactions() system operation.

4p

‘ :TransactionContainerl ‘ ‘Transaction |

T
| \

ListPreviousTransactions() _ |
|

-]

\

myList=getTransactions()_

|OOE / [for all transactiohs

p=getPhoneNumber()

Y

]
i
J

a=getAmount()

4

m=getMessage()

Y

display(p,a,m)

I haven't covered the loop syntax in detail
during lectures, so they may draw this differently.

]

-
‘ :TransactionContainerl ‘ ‘Transaction |
Version 2
‘ System | ‘ ‘TransactionContainer | ‘ tTransaction |
T T 1
| | i
ListPreviousTransactions() , | ! !
> i |
| |
t=getFirstTransaction()_ 1 !
,U !
|
IooE) [t=null] : :
p=getPhoneNumber() X -
| ’U
|
a=getAmount() X -
; .
: J
| i
m=getMessage() ! .
i ’U
|
_ : .
| displaypam) H ! !
| i
| |
t=getNextTransaction()_ ! !
11 |
i
| |
X \| I haven't covered the loop syntax in detail
! ! during lectures, so they may draw this differently.
= | .
‘ System | ‘ :TransactionContainerl ‘ tTransaction

15

Question 16. Class Diagram 4p

Please draw a partial class diagram that includes the classes, methods, and attributes that you used in the interaction
diagram in the previous question. Remember to also consider the associations between classes, and add (if and where
applicable) base classes and inheritance hierarchies.

@ TransactionContainer

@ System

@ ListPreviousTransactions()
B addToTransactionList{phone.amount,message)

@ List<Transaction> getTransactions{)
@ Transaction™ getFirstTransaction()
@ Transaction® getNextTransaction()

O String myPhoneMumber
O int myAmount
O String myMessage

@ getPhoneMumber()
@ getAmount()
@ getMessage()

@ Incoming @ Outgoing

"Incoming" and "Outgoing" can not be guessed at from the system description

16

